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Electroconvection in a suspended fluid film: A linear stability analysis
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A suspended fluid film with two free surfaces convects when a sufficiently large voltage is applied across it.
We present a linear stability analysis for this system. The forces driving convection are due to the interaction
of the applied electric field with space charge that develops near the free surfaces. Our analysis is similar to
that for the two-dimensional Be´nard problem, but with important differences due to coupling between the
charge distribution and the field. We find the neutral stability boundary of a dimensionless control parameter
R as a function of the dimensionless wave numberk. R, which is proportional to the square of the applied
voltage, is analogous to the Rayleigh number. The critical valuesRc andkc are found from the minimum of
the stability boundary, and its curvature at the minimum gives the correlation lengthj0. The characteristic time
scalet0, which depends on a second dimensionless parameterP, analogous to the Prandtl number, is deter-
mined from the linear growth rate near onset.j0 and t0 are coefficients in the Ginzburg-Landau amplitude
equation that describes the flow pattern near onset in this system. We compare our results with recent experi-
ments.@S1063-651X~97!06702-0#

PACS number~s!: 47.20.Ky, 47.65.1a, 61.30.2v
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I. INTRODUCTION

The regular patterns that form when a dissipative, n
equilibrium system is driven just beyond the threshold
certain symmetry-breaking instabilities are in many wa
analogous to the simple ordered phases that appear follo
equilibrium phase transitions@1#. Patterns can, however, ex
hibit interesting nonlinear dynamical behavior, for examp
chaotic motion, which has no analog in equilibrium system
Several fluid-dynamical systems undergo pattern-forming
stabilities that are amenable to both theoretical and lab
tory studies. Examples that have been extensively explo
into the nonlinear regime include Rayleigh-Be´nard convec-
tion @1,2#, Taylor vortex flow@1,2#, and electroconvection in
nematic liquid crystals@3#. In each of these cases, an ess
tial foundation for understanding the nonlinear behavior i
complete analysis of the initial linear instability. The line
stability analyses for Rayleigh-Be´nard convection and Tay
lor vortex flow are classic problems in fluid mechani
@1,4,5#. The mechanism of the linear instability for electr
convection in nematic liquid crystals required many years
elucidate, but even this very complex system is now reas
ably well understood in both the linear and the nonline
regimes@3#.

Our objective in this paper is to carry out a realistic line
stability analysis for a different electrically driven instabilit
namely, electroconvection in a thin, suspended fluid film. W
have observed electroconvection patterns in experiment
thin suspended films of smectic-A liquid crystals @6–10#,
which are isotropic in the plane of the film but have a laye
structure that very strongly impedes flows perpendicula
the film. As a result, these films can convect rapidly with
change in thickness. We have observed convection in fi
only a few molecules thick. Our immediate goal is to und
stand the onset of electroconvection in this system. The
551063-651X/97/55~3!/2682~11!/$10.00
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stability mechanism we describe, however, is not specific
smectic films and would presumably apply to any su
ciently two-dimensional, weakly conducting fluid film. I
fact, similar convective flows have been observed in thic
films of nematic and isotropic liquids@11#. In these cases
however, surface tension effects and the convective flow
self cause thickness variations in the films, which make th
behavior more complicated than that of the smectic films

The model we describe below is physically similar to
highly simplified one proposed by Faetti, Fronzoni, a
Rolla @11# for the ‘‘vortex mode’’ convection they observe
in nematic films, but our analysis is carried much furth
There is also some similarity between the driving mechan
considered here and that which drives electroconvection n
the free surface in a partly filled capacitor@12#.

The relevant experimental arrangement is shown sc
matically in Fig. 1. A thin fluid film is suspended betwee
electrodes, with both its top and bottom surfaces free. T
width of the film d is much larger than its thicknesss, and
we will treat it as being purely two dimensional. When th
dc voltage applied across the electrodes exceeds a cr
value, the film convects in a pattern of vortices confined
the plane of the film. We neglect any effects of air drag
assuming that the film is suspended in vacuum. We will a
treat the film as a weak Ohmic conductor and neglect
electrochemical charge production on the electrodes or in
bulk of the fluid. The currents involved are assumed to
sufficiently small that magnetic forces are insignificant.

The body force responsible for driving any electroconve
tive flow results from an electric field acting on regions
nonzero charge density in the fluid. To analyze the elec
convection system we must first identify the mechanism t
gives rise to regions of locally unbalanced charge in
fluid, and second, solve for the charges and fields s
consistently, since these are coupled by Maxwell’s eq
2682 © 1997 The American Physical Society
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55 2683ELECTROCONVECTION IN A SUSPENDED FLUID . . .
tions. In our model, the charge density arises due to the e
trical boundary conditions at the free surfaces of the film@8#.
The inset to Fig. 1 shows the essential details of the cha
separation mechanism. Below the onset of convection,
applied voltage drives a uniform, steady current densitJ
through the film. This is accompanied by a constant elec
field Einside5J/s, wheres is the bulk conductivity. The in-
terior fieldEinsidehas no component perpendicular to the fi
plane. However, the exterior fieldEoutside must have both
parallel and perpendicular components just outside the
surfaces of the film. It cannot, in general, be perpendicula
the surface because the surface is not an equipotential
film is an Ohmic conductor, so its surface potential var
linearly with the coordinate between the electrodes. The p
allel componentE outside

uu is equal toEinsideby the usual match-
ing conditions on electric fields across surfaces. The perp
dicular componentEoutside

' is proportional to the surface
charge densitya at that location. It is the interaction of th
parallel component of the fieldEinside[Eoutside

uu with the sur-
face charge densitya at the two free surfaces that drives th
convective flow above the onset of the instability.

In Sec. II, we calculate the surface charge density be
onset by solving for the fieldsexterior to the film. This prob-
lem is solved analytically for thin films in two simple elec
trode geometries. We find that a ‘‘charge inversion’’ is set
in the base state: the film has a positive charge density c
to the positive electrode and a negative charge density c
to the negative electrode. This inverted charge distributio
sustained by the applied potential difference across the
ductor: without a potential difference, the film surfaces a
equipotentials, the component of the field parallel to the s

FIG. 1. ~a! Schematic of the film and electrodes, as used
smectic experiments@8#. The film and electrode are shown eno
mously exaggerated in thickness; in fact,s/d'1025. ~b! Schematic
illustration of the fields inside and outside the film in the small b
in part ~a!. a is a surface charge density.
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face is zero, and thus there are no forces to drive convec
even if an electrostatic surface charge is present. This
verted base state configuration is analogous to the mass
sity inversion that arises in the Be´nard problem, and in Sec
III we show that it leads to a hydrodynamic instablity whe
the applied voltage is sufficiently large. Unlike the density
the Bénard problem, however, the charge density in the b
state is a nonlinear function of position across the film.

By treating the film as two dimensional, we neglect t
diffusion of charge on the scale of the film thicknesss,
which acts to smear the surface charge over a thicknes
order the Debye screening lengthlD @8#. For the very thin
films considered here,lD may be comparable tos, in which
case the surface charges and surface forces described a
will extend over the whole thickness of the film. One c
show that the total charge contained in one such Debye la
is the same as that which would reside at one surface in
absence of diffusion. The approximation that the film is
two-dimensional conducting sheet may be expected to br
down for thick films for whichs@lD . In this limit, surface
forces may lead to significant shears and internal flows, a
apparently the case in thick nematic and isotropic films@11#.
Diffusion on the much larger scale of the film widthd is also
neglected.

In Sec. III, we describe the linear stability analysis f
infinitesimal perturbations about the base state. The stab
calculation is somewhat analogous to that for the Be´nard
problem. Dimensionless quantitiesR andP appear, which
are analogous to the Rayleigh and Prandtl numbers.R is
proportional to the square of the applied voltage, whileP is
the ratio of the thin film charge relaxation time to the visco
relaxation time.

The differences between our calculation and the Be´nard
problem are due to the additional coupling between the fi
and the charge density, which is also responsible for
nonlinearity of the base state charge density. The charge
sity and the field are analogous to the mass density and
gravitational acceleration in the Be´nard problem; the new
requirement that these also satisfy Maxwell’s equatio
amounts to requiring a nonlocal relation between the cha
density and the electric potential. If we suppress this non
cality by assuming these are simply proportional, the b
state charge density becomes linear and our problem red
completely to the Be´nard case. Interestingly, this proportion
ality is nearly correct except near the edges of the film.

In Sec. IV we discuss the results for the neutral curve a
compare the predictions for the critical voltageVc and the
critical wave numberkc with the values obtained from ex
periments. We also calculate the correlation lengthj0 from
the curvature of the neutral curve nearkc and the character
istic time t0 from the linear growth rate atkc . These quan-
tities, which are coefficients in the Ginzburg-Landau equ
tion that describes the amplitude of the pattern near onse
discussed below@10,13#, are also compared with experimen
tal results. Section V is a brief summary and conclusion.

II. THE BASE STATE CHARGE DENSITY

Our first task is to calculate the configuration of charg
and fields below the onset of convection. As described in
preceding section, this is essentially an electrostatic prob
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2684 55DAYA, MORRIS, AND de BRUYN
in the region exterior to the film. The coordinates used a
the geometry of the electrodes and film are shown in Fig
The origin is at the center of the film, which lies betwe
z56s/2 andy56d/2. We will consider the limit of a thin
film for which s!d. The film is assumed to extend infinitel
in the x direction. The upper and lower surfaces of the fi
are free and the region outside the film has permittivitye0.
The permittivitye of the fluid will turn out to be irrelevant to
the analysis of the base state.

The film will be treated as a charged conducting shee
negligible thickness in thex-y plane with bulk conductivity
s. Its edges aty56d/2 are held at applied potentia
6V/2 by electrodes of zero thickness. Below the onset
convection, the film behaves as an Ohmic conductor, so
the potential on the film varies linearly between2V/2 and
1V/2 for 2d/2<y<d/2. The potential is zero on thex axis
and asuzu→`. The potential exterior to the film is symmetr
above and below thex-y plane and independent ofx. The
charge densityq is proportional to the perpendicular comp
nent of the field exterior to the film, at the film’s surface, a
so to thez derivative of the potential there. To calculateq we
need only solve for the potential in the upper half of they-
z plane, subject to boundary conditions on they axis. We
will consider two simple electrode geometries, which we
fer to as ‘‘plates’’ and ‘‘wires.’’ In the plate geometry, w
specify the potential on the rest of they axis to be2V/2 for
y,2d/2 and1V/2 for y.d/2. Solving for the potential is a
Dirichlet problem, which we solve below using a Green
function. This geometry corresponds to a film held betwe
infinite knife edges. Most of the experiments@6,8–10#, how-
ever, used thin wire electrodes to support the edges of
film, as shown schematically in Fig. 1~a!. To model this ge-
ometry, the applied potential6V/2 is specified only at the
two pointsy56d/2. For uyu.d/2 we require that thez de-
rivative of the potential on they axis be zero. Thus, in the
upper half of the y-z plane, we must solve a mixe
boundary-value problem with Dirichlet conditions fo
2d/2<y<d/2 and Neumann conditions foruyu.d/2. This is
done analytically below, using the method of dual integ
equations@14#.

A. The base state for plate electrodes

We begin with the simpler plate electrode configuratio
We must solve the Laplace equation for the potentialC in
the upper halfy-z plane,

FIG. 2. Coordinates used in the analysis, in which the film
treated as a two-dimensional sheet.
d
.

f

f
at

-

n

he

l

.

S ]2

]y2
1

]2
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subject to the piecewise linear Dirichlet boundary conditio
on they axis,

C~y,0!55
2
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2
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,y,
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2
,

d

2
<y,`.

~2.2!

The appropriate Green’s function is constructed from
unit line charge at (y8,z8) and its image at (y8,2z8),

G~y,z;y8,z8!52 ln
~y2y8!21~z2z8!2

~y2y8!21~z1z8!2
. ~2.3!

The potential at any point in the upper half plane is given

C~y,z!5
1

4pE2`

`

C~y8,0!
]G

]z8
U
z850

dy8

5
z

pE2`

` C~y8,0!

z21~y2y8!2
dy8. ~2.4!

The surface charge density on the film is a consequenc
the fact that thez components of the electric fields inside an
outside the conducting film are different. Inside the cond
tor, in the absence of diffusion, thez component of the field
is identically zero, as in Fig. 1~b!, and hence only the exter
nal field is required to determine the surface charge dens
As mentioned in the Introduction, the presence of a diffus
layer near the surface does not change the total charge
sity present, per unit area. The surface charge density on
upper sideof the film is 2e0]C/]zuz5s/2 . In the limit
s→0, ]C/]z is discontinuous acrossz50, so we use a one
sided derivative valid asz→01. To get the total surface
charge densityq on the film, we introduce a factor 2 to
account for the two free surfaces, so that

q522e0
]C

]z U
z501

. ~2.5!

Using this with Eq.~2.4!, interchanging the order of differ
entiation and integration, and using Eq.~2.2! gives

2
p

2e0
qp~y!5E

2`

2d/2 2V/2

z21~y2y8!2
dy8U

z501

1E
2d/2

d/2 Vy8/d

z21~y2y8!2
dy8U

z501

1E
d/2

` V/2

z21~y2y8!2
dy8U

z501

, ~2.6!

where the subscriptp denotes plate electrodes. After integr
tion, the resulting expression was expanded as a power s



le

ge
tiv
d

t
th

a
i-
ion
ar

tiv

s
b

a
up

en-

.
by

so
an
s of

he

the

rge

nto

to
ly
uc-
.

xt of
its
nal

55 2685ELECTROCONVECTION IN A SUSPENDED FLUID . . .
in z and evaluated asz→01. After some simplification, we
find the surface charge density for the case of plate e
trodes to be given by

qp~y!52
2Ve0
pd

lnU y2d/2

y1d/2U. ~2.7!

This distribution is shown in Fig. 3. Note that the char
density is positive near the positive electrode and nega
near the negative electrode, giving the charge inversion
scribed in the Introduction. The charge density diverges
the electrodes, which is an unphysical consequence of
limit s→0. In the real system, the finite thicknesses of
film and electrodes will impose a cutoff onqp . This diver-
gence, while unphysical, is weak enough to be mathem
cally tractable. It will turn out that the rigid boundary cond
tions we impose on the flow, described in the next sect
ensure that the contributions from the edges of the film
small. On the other hand, the fact thatqp(y) is not a linear
function ofy has important consequences for the quantita
results of the stability analysis.

B. The base state for wire electrodes

We now turn to the case of wire electrodes. For this ca
the mixed boundary-value electrostatic problem can
solved by the theory of dual integral equations@14#. We must
solve Eq.~2.1!, subject to the mixed boundary conditions

C~y,0!5
V

d
y for uyu<d/2, ~2.8!

]C~y,z!

]z U
z501

50 for uyu.d/2. ~2.9!

By separation of variables and using the fact th
C(0,0)50, we make the ansatz that the potential in the
per half plane can be written as

FIG. 3. Surface charge densities for plate~dashed line! and wire
~solid line! electrodes.
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C~y,z!5E
0

`A~k!

k
e2kzsin~ky!dk. ~2.10!

With this ansatz, we find the dual integral equations

E
0

`A~k!

k
sin~ky!dk5

V

d
y for uyu,d/2, ~2.11!

E
0

`

A~k!sin~ky!dk50 for uyu.d/2. ~2.12!

This pair of integral equations may be solved for the pot
tial in the upper half plane by the method of Sneddon@14#,
giving

C~y,z!5
V

2E0
`J1~kd/2!

k
e2kzsin~ky!dk, ~2.13!

whereJ1 is the first-order Bessel function of the first kind
Using Eq.~2.5!, the total surface charge density is given

qw~y!5e0VE
0

`

J1~kd/2!sin~ky!dk5
2e0V

d

y

A~d/2!22y2
.

~2.14!

The subscriptw denotes wire electrodes. This result is al
shown in Fig. 3. As for the plate electrodes, we find
inverted charge distribution and divergences at the edge
the film.

Below the onset of convection, the electric field inside t
film is constant and points along2ŷ. The force driving the
convection is due to the in-plane electric field acting on
charge densitiesq. Unlike the Bénard problem, in which the
temperature profile is linear below onset, here the cha
density, and hence the body force, is not linear iny. This has
the effect of introducing certain nonconstant coefficients i
the stability problem, as described in the next section.

III. LINEAR STABILITY ANALYSIS

In this section we consider the stability of the base state
infinitesimal perturbations. We will show that for sufficient
largeV, the electrical forces overcome viscous and cond
tion losses and the film becomes unstable to convection

A. Perturbation equations

Within the thin film, we assume that the fluid velocityu is
confined to the film plane, withu5ux̂1v ŷ. In addition, we
will neglect any shears in thez direction. As discussed
above, these assumptions are reasonable in the conte
thin smectic films, where the layer structure strongly inhib
flow across layers. We treat the film as a two-dimensio
conducting fluid, with areal material parametersrs5sr,
hs5sh, andss5ss, wheres is the film thickness,r is the
bulk density,h is the bulk molecular viscosity, ands is the
bulk conductivity.~In smectic-A films, the viscosity is highly
anisotropic; the relevant component to use forh is h3, the
viscosity related to shears within layer planes.! The two-
dimensional pressure field is given byPs5sP. The flow is
driven by the surface force densityqEs , whereEs is the
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2686 55DAYA, MORRIS, AND de BRUYN
electric field in the film plane. The flow velocity is governe
by the two-dimensional Navier-Stokes equation

rsF]u]t 1~u•¹s!uG52¹sPs1hs¹s
2u1qEs , ~3.1!

where ¹s is the two-dimensional gradientx̂]/]x1 ŷ]/]y.
The fluid is assumed to be incompressible, so that

¹s•u50. ~3.2!

This condition may also be viewed as a constant thickn
assumption. We impose physically realistic rigid bounda
conditions onu at the edges of the film, so

u[0,
]v
]y

[0 at y56d/2. ~3.3!

The motion of charge is governed by the charge continu
equation

]q

]t
52¹s•Js52¹s•~qu1ssEs!, ~3.4!

in which Js is the two-dimensional current density in th
plane of the film, and includes contributions from both co
duction (ssEs) and convection (qu). Diffusion of charge in
the plane of the film has been neglected.

The electric field in the plane of the filmEs is given by

Es52¹sCs52¹sCuz50. ~3.5!

As in Sec. II, C is the potential that solves thethree-
dimensionalLaplace equation

¹2C50 ~3.6!

in the half spacez>0, with the surface charge density give
by Eq. ~2.5!.

The surface charge densityq in Eqs. ~3.1! and ~3.4! in
principle contains both the density of free chargesqfree and
that of the dielectric polarization charges, so th
q5qfree2¹s•Ps . HerePs5sP, whereP, the bulk polariza-
tion density, is given byP5e0xE, wherex is the electric
susceptibility. Inside the film,E5Es , independent ofz, and
has zeroz component. Equation~2.5!, which involves only
exterior fields, therefore only givesqfree. In the base state
however,¹s•Es50 andq5qfree, so polarization effects are
irrelevant. In the general case, one can show, using the s
ings given below, that the dimensionless form of the¹s•Ps
terms are proportional toxs/d. For the experiments of inter
est, xs/d'1024, so we can safely neglect polarization e
fects.

Equations~3.1!–~3.6! have a simple solution whenu[0.
Equation ~3.6!, subject to the appropriate boundary con
tions, corresponds to the base state charge-density pro
solved in Sec. II. Once the fields andq are found from Eqs.
~2.5! and ~3.6!, Eq. ~3.1! can be solved for the pressurePs
whose gradient balances the surface force densityqEs .
Equation ~3.4! then gives a constant current dens
Js5ssEs , with a constant interior fieldEs52(V/d) ŷ. This
ss
y

y

-

t

al-

-
em

is a self-consistent solution that corresponds to hydrost
equilibrium. The pressure gradient points everywhere tow
the midline of the filmy50.

Expanding the divergence in Eq.~3.4! and using Eq.~3.2!,
the charge continuity equation becomes

]q

]t
52u•¹sq2ss¹s•Es. ~3.7!

Note that¹s•Es is not equivalent to¹•E, because of discon
tinuities in thez component ofE at z50. Thus¹s•Es is not
directly related to the charge densityq. ¹s•Es can be found
only after solving the full three-dimensional Laplace pro
lem given by Eq.~3.6!.

To examine the stability of the base state, we introdu
perturbed quantities

u501u~1!, ~3.8!

q5q~0!1q~1!, ~3.9!

Ps5Ps
~0!1Ps

~1! , ~3.10!

Es5Es
~0!1Es

~1! , ~3.11!

where Es
(0)5Ey

(0)ŷ and Es
(1)5Ex

(1)x̂1Ey
(1)ŷ. Here Ey

(0)5
2V/d andq(0) is the base state charge density found in S
II. To first order in the small perturbations, Eqs.~3.1!, ~3.2!,
and ~3.7! become

¹s•u
~1!50, ~3.12!

rs
]u~1!

]t
52¹sPs

~1!1hs¹s
2u~1!1q~0!Ex

~1!x̂1q~1!Ey
~0!ŷ

1q~0!Ey
~1!ŷ, ~3.13!

]q~1!

]t
52u~1!

•¹sq2ss@¹s•~Ex
~1!x̂1Ey

~1!ŷ!#. ~3.14!

Taking the curl of Eq.~3.13! eliminates the pressure. Takin
a second curl and using Eq.~3.2! gives

rs
]

]t
¹s
2u~1!5hs¹s

2¹s
2u~1!2¹s

3@¹s3~q~0!Ex
~1!x̂1q~1!Ey

~0!ŷ1q~0!Ey
~1!ŷ!#.

~3.15!

From this equation, we select they component, which is

rs
]

]t
¹s
2v ~1!5hs¹s

2¹s
2v ~1!1Ey

~0!
]2q~1!

]x2
2

]q~0!

]y

]Ex
~1!

]x
.

~3.16!

Using the fact thatq(0) is only a function ofy, Eq. ~3.14!
becomes

]q~1!

]t
52v ~1!

]q~0!

]y
2ssS ]Ex

~1!

]x
1

]Ey
~1!

]y D . ~3.17!
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55 2687ELECTROCONVECTION IN A SUSPENDED FLUID . . .
In the previous equations,Es
(1) is the in-plane electric field

produced by the charge distributionq(1). Introducing pertur-
bations for the electric potential withC5C (0)1C (1), we
have Es

(1)52¹sCs
(1)52¹sC

(1)uz50. The perturbation po-
tential C (1) is the solution of a new three-dimension
Laplace problem inz>0 analogous to Eq.~3.6!,

¹2C~1!50, ~3.18!

with q(1)522e0(]C (1)/]z)uz501.
We now replace the various field components with

appropriate derivatives of the potential in Eqs.~3.16! and
~3.17! to get

rs
]

]t
¹s
2v ~1!5hs¹s

2¹s
2v ~1!1Ey

~0!
]2q~1!

]x2
1

]q~0!

]y

]2Cs
~1!

]x2
,

~3.19!

]q~1!

]t
52v ~1!

]q~0!

]y
1ssS ]2Cs

~1!

]x2
1

]2Cs
~1!

]y2 D . ~3.20!

Equations~3.18!–~3.20! are the equations for the perturb
tions that we must solve to determine the stability of the b
state.

The specification of the boundary conditions necessar
solve Eq. ~3.18! requires some explanation. By writin
C5C (0)1C (1), we split the full Laplace problem of Eq
~3.6! into separate Laplace problems at each order. At ze
order, the boundary conditions atz50 on C (0) are those
described in Sec. II for each electrode configuration in
base state. In particular,C (0) was set equal to6V/2 at the
edges of the film. At first order, the boundary conditions
C (1) require thatC (1)50 at the edges of the film and o
both of the electrodes in the plate case. In the wire electr
case we require]C (1)/]zuz50150 for uyu.d/2 andz50. In
either electrode case, we will find Dirichlet boundary con
tions forC (1) on the film itself by self-consistently solvin
Eq. ~3.20!. Proceeding in this way, the boundary conditio
on the total potentialC are satisified by the superposition
C (0) andC (1).

B. Normal mode expansion

We now expand the velocity, charge density, and pot
tial perturbations in normal modes that are periodic inx with
wave numberk and have growth rateg,

v ~1!5L~y!eikx1gt, ~3.21!

q~1!5Q~y,k,g!eikx1gt, ~3.22!

C~1!5V~y,z,k,g!eikx1gt. ~3.23!

We substitute Eqs.~3.21!–~3.23! into Eqs.~3.18!–~3.20! and
nondimensionalize the system by dividing lengths byd,
times bye0d/ss , and charge densities bye0V/d. We then
write D5]/]y and define new dimensionless quantiti
k5kd and Q(y)5d2Dq(0)(y)/e0V. The resulting dimen-
sionless equations are

~D22k2!SD22k22
g

PDL1k2R~Q2QVs!50 ~3.24!
e

e

to

th

e

e

-

-

and

~D22k2!Vs2gQ2QL50, ~3.25!

whereVs5Vuz50. The three-dimensional Laplace equatio
Eq. ~3.18!, becomes

¹2~Veikx!5F ]2

]y2
1

]2

]z2
2k2GV50, ~3.26!

with Eq. ~2.5! imposing the condition that

Q522
]V

]z U
z501

. ~3.27!

Equation~3.26! is a two-dimensionalHelmholtz equation in
the half planex50, z>0, which is perpendicular to the
plane of the film. Equations~3.26! and ~3.27! determine the
rather complicated nonlocal coupling between the in-pla
potential functionVs(y,k,g)5V(y,0,k,g) and the charge
density functionQ(y,k,g).

Two dimensionless groups appear:R, which plays the
part of the Rayleigh number, andP, which plays the part of
the Prandtl number. In terms of the bulk, rather than surfa
material parameters, they are given by

R5
e0
2V2

shs2
~3.28!

and

P5
e0h

rsds
. ~3.29!

R, the control parameter, is proportional toV2. It is interest-
ing to note thatR is independent ofd, the width of the film.
The Prandtl-like parameterP may be regarded as the rat
tq /tv of the two time scales in the problem, the charge
laxation time for thin films@8# tq5e0d/ss, and the viscous
relaxation timetv5rd2/h.

The effect of the nonlineary dependence of the derivativ
of the base state charge densityDq(0)(y) is contained in the
nonconstant coefficientQ(y). For the plate and wire elec
trode configurations, we find from Eqs.~2.7! and~2.14! that
Q(y) is given by

Qp~y!5
8

p~124y2!
~3.30!

and

Qw~y!5
4

~124y2!3/2
, ~3.31!

respectively.

C. Analogy to the Bénard problem

The above equations bear a strong analogy to the co
sponding equations in the Be´nard problem. The correspon
dence becomes complete if the nonlocal coupling of
charges and potentials given by Eqs.~3.26! and ~3.27! is
suppressed by simply settingq}Cs . Applying this assump-
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tion to the base state removes the nonlineary dependence o
the charge density so thatQ(y)[1. In fact, a detailed analy
sis shows thatq is always nearly proportional toCs in the
central part of the film. This can be seen, for example, in F
3 neary50. If this proportionality is assumed to hold ever
where, then our continuity equation for charge, Eq.~3.4!,
becomes identical to the thermal diffusion equation in
Bénard problem. Under the same assumption, the force t
qEs in Eq. ~3.1! becomes proportional toqŷ, which is the
form of the analgous term in the Be´nard problem. Turning
the argument around, one can say that the reason tha
systemdoes notreduce to the Be´nard problem is because th
charges and fields are nonlocally coupled via the charge
tribution’s own self-field.

D. The compatibility condition

To find the conditions thatR, P, k, andg must satisfy for
solutions to exist, we solve the linearized equations
means of various expansions. A crucial step that must
done numerically is the solution of the Helmholtz equation
the plane perpendicular to the film, Eq.~3.26!, which neces-
sarily involves a numerical relaxation calculation.

At the edges of the film,y561/2, the rigid boundary
conditions on the flow velocityu(1), given by Eq.~3.3!, re-
quire thatL(y) satisfy the four conditions

L~61/2!5DL~61/2!50. ~3.32!

To ensure this, we expandL(y) as

L~y!5 (
m51

`

AmCm~y!, ~3.33!

where theCm(y) are even Chandrasekhar functions@4#,

Cm~y!5
cosh~lmy!

cosh~lm/2!
2
cos~lmy!

cos~lm/2!
. ~3.34!

Herelm is themth root of tanh(lm/2)1tan(lm/2)50 @15#.
We can restrict the expansion to even functions becaus
the symmetry of the equations abouty50. Note that an ex-
pansion inCm has been shown to give a good description
the velocity field measured in experiments on electroconv
tion in smectic films@8#. Only relative amplitudes matter in
Eq. ~3.33!, so we setA151. It follows from linearity that we
can also writeV5(mAmVm and Q5(mAmQm , where
Vm andQm are the solutions corresponding toL5Cm . As
above, we denoteVsm5Vmuz50.

1. The potential functionVsm for g50

Setting g50 and substitutingCm for L in Eq. ~3.25!
gives

~D22k2!Vsm5QCm , ~3.35!

which may be solved directly by Fourier expansion. Sin
QCm is even, we expand

QCm5 (
n50

`

bmncos~2npy!, ~3.36!
.

e
m

ur

is-

y
e

of

f
c-

e

in which

bm052E
0

1/2

Q~y!Cm~y!dy ~3.37!

and

bmn54E
0

1/2

Q~y!Cm~y!cos~2npy!dy. ~3.38!

Using a similar Fourier expansion ofVsm and imposing the
zero boundary conditions aty561/2, we find

Vsm5 (
n50

`
bmn

@~2np!21k2# F ~21!ncosh~ky!

cosh~k/2!
2cos~2npy!G .

~3.39!

To calculateVsm, we used a Romberg numerical integratio
scheme@16# to tabulate the integrals forbmn in Eqs. ~3.37!
and~3.38! for the each of the two electrode geometries, us
Qp andQw as given by Eqs.~3.30! and ~3.31!. We used an
upper cutoff ofn529, which was dictated by the doubl
precision accuracy of the Romberg scheme.

2. The potential functionVsm for gÞ0

For nonzerog, we solved

~D22k2!Vsm5QCm1gQm ~3.40!

by an iterative scheme. We used theg50 solution, Eq.
~3.39!, to find a first approximationVsm

[0] From this, we cal-
culated the corresponding approximate the charge-den
function Qm

[0] using the relaxation algorithm described
Sec. IIID3 below. ThenQCm1gQm

[0] was Fourier expanded
in the same manner asQCm in Eqs. ~3.36!–~3.38! above.
This expansion was used to find a series solution analog
to Eq. ~3.39! for the next approximationVsm

[1] which was
then relaxed to findQm

[1] This sequence of steps was iterat
until it converged for bothVsm andQm . The convergence
criterion was a sum of the squares of 100 differences
successive iterates distributed on 0<y<1/2. For ugu<0.1,
the sum converged after seven or eight iterations to a pr
sion limited by the Romberg integration scheme used to fi
the Fourier coefficients.

3. The charge-density functionQm

We solved the Helmholtz equation, Eq.~3.26!, for Vm for
each of the two electrode geometries, using a simpleSOR

algorithm @16#. In each case, the Dirichlet conditions o
Vm for 21/2<y<1/2 and z50 are given byVsm @Eq.
~3.39!# in the case ofg50 or by the corresponding expres
sion during iteration for gÞ0. Beyond the film, for
uyu.1/2, z50, we applied the Dirichlet conditionVm50 in
the plate electrode case and Neumann conditi
(]Vm /]z)uz5050 in the wire case.

BecauseVm is even iny, it need only be relaxed in the
first quadrant of they-z plane. We used anN3N square
lattice of cells in this quadrant, withNfilm,N points between
y50 andy51/2. On the outer edges of the lattice, we s
Vm50 to enforce the zero boundary condition at infinit
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55 2689ELECTROCONVECTION IN A SUSPENDED FLUID . . .
Starting withN5100 andNfilm550, we systematically in-
creasedN andNfilm is such a way thatNfilm /N→0. All the
quantities calculated below showed a small residual mo
tonic variation withNfilm ; we removed this by plotting eac
against 1/Nfilm and extrapolating to 1/Nfilm→0.

From the resultingVm , the charge density perturbatio
Qm was determined from Eq.~3.27! by taking the one-sided
z derivative numerically.Qm was therefore only known a
Nfilm lattice points across the film. For the purposes of in
gration, we used a Chebyshev interpolation@16# of these
points.

4. The compatibility condition

To find the general compatibility conditions on solution
we substitute the expansions forL, Vs , and Q into Eq.
~3.24! to get

(
m51

` F ~D22k2!SD22k22
g

PDCm

1k2R~Qm2QVsm!GAm50. ~3.41!

Multiplying by the Chandrasekhar functionCl(y) and inte-
grating fromy521/2 to y511/2, we form inner products
denoted by^ &. Then Eq.~3.41! becomes a linear homog
enous system with the determinant compatibility conditio

I KCl~D
22k2!SD22k22

g

PDCmL
1k2R^Cl~Qm2QVsm!&I50. ~3.42!

After some simplification, this can be written as

I ~lm
4 1k4!d lm22k2Xlm1k2RFlm2

g

P ~Xlm2k2d lm!I50,

~3.43!

whereFlm5^Cl(Qm2QVsm)&. The matrix elementsXlm are
given analytically by@4#

Xlm5^Cl9Cm& ~3.44!

55
2

l l
42lm

4 ~Cl-Cm9 2Cm-Cl9!U
y51/2

when lÞm ~3.45!

1

lm
4 S 12Cm-Cm9 2

1

4
~Cm-!2DU

y51/2

when l5m, ~3,46!

whereCm9 5D2Cm(y), etc. The matrix elementsFlm(k,g)
were evaluated numerically for each electrode configura
using Romberg integration@16#. The divergences inQ(y) at
the edges of the film are overcome becauseCl(y) goes to
zero sufficiently fast aty561/2. The functionsQm and
o-

-

,

n

Vsm are simple smooth functions for the first few values
m and are straightforward to integrate numerically.

E. Marginal stability

To find the conditions for marginal stability, we set th
growth rate of the perturbationsg equal to zero in the com
patibility condition, Eq.~3.43!. The Prandtl-like dimension-
less groupP drops out, so that the marginal stability cond
tions are independent ofP, just as is the case in the Be´nard
problem. Eq.~3.43! then implicitly defines the marginal sta
bility curveR5R0(k). We proceed as follows. Choosing
value ofk, we setl5m51 and calculateF11(k). Then Eq.
~3.43! can be simply solved to get the first approximati
R0

[1] (k). We then findFlm(k) for l ,m51,2 and search nea
R0

[1] (k) for roots of the 232 determinant, Eq.~3.43!, to find
R0

[2] (k). We can then useA151 to findA2 in Eq. ~3.33! by
backsubstitution. We carried this algorithm to the third ord
in the Chandrasekhar expansion, for which the maxim
value ofuA3u is of order 1022 and the resulting neutral curv
R0(k) no longer changes significantly. Figure 4 shows t
amplitudesA2 andA3 for the wire case, relative toA151. It
is clear that the higher terms in the Chandrasekhar expan
contribute very little to the sum in Eq.~3.33!.

Figure 5 shows the neutral curve for the plate and w
electrode configurations. The minima of these curves de
the critical valueskc andRc5R0(kc) for each case. Thes
values are listed in Table I. We find that both neutral curv
give kc between 4 and 5, but thatRc is lower for the wire
electrode case. This is apparently due to the steeper slop
q(0)(y), evident in Fig. 3, for the case of wire electrode
Neither value ofkc is particularly close to the Be´nard value
of 3.114, but they are in reasonable agreement with the v
determined from the smectic film experiments@6,8,10#, as
discussed in Sec. IV below.

We can define a length scalej0 in terms of the curvature
of R0(k) nearkc @1,2,5#:

j0
25

1

2

d2ec
dk2 U

k5kc

, ~3.47!

whereec5@R0(k)/Rc#21. This length will appear as a co
efficient in an amplitude equation description of the conv
tion pattern near onset@1,2,5#. To find j0 accurately, we fit

FIG. 4. AmplitudesA2 andA3 of the second and third terms o
the expansion forL(y), Eq. ~3.33!.
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2690 55DAYA, MORRIS, AND de BRUYN
ec to a parabola over a rangek5kc6Dk and then system
atically reducedDk until the value ofj0 taken from the fit
became independent ofDk. This corresponded to a fitting
rangeec<531024. The values ofj0, given in Table I, were
slightly dependent on the electrode configuration.

F. The linear growth rate g

Returning to the full compatibility condition Eq.~3.43!
with gÞ0, we consider the behavior of the growth rateg of
the linear modes near the critical values ofR and k. The
time scalet0, defined by

t0
215

]g~e!

]e U
k5kc ,e50

, ~3.48!

where e5(R/Rc)21, will also appear in an amplitud
equation description of the pattern near onset@1,2,5#.

The matrix elementFlm(k,g) is rather expensive to cal
culate forgÞ0 because we must use the iteration sche
outlined in Sec. IIID2. It is most computationally efficient
choose a value ofg, fix k5kc and then solve Eq.~3.43! for
R. This was done for ten values ofg in the range
20.1<g<10.1, using three Chandrasekhar modes. The
sults depend onP. The resulting functiong(e) is very nearly
linear in e with a P-dependent slope andg(0)50. We de-
terminedt0 from polynomial fits tog(e) for P>0.01. The
results are only slightly dependent on electrode configu
tion. t0 is plotted as a function ofP for wire electrodes in
Fig. 6. ForP.1, t0 tends towards the limiting values give
in Table I.

TABLE I. Numerical results.

Electrode geometry Wires Plate

critical wave numberkc 4.744 4.223
critical control parameterRc 76.77 91.84
correlation lengthj0 0.2843 0.2975
time scalet0(P5`) 0.351 0.372

FIG. 5. Neutral curve for plate~dashed line! and wire ~solid
line! electrodes.
e

e-

a-

IV. DISCUSSION

The stability analysis presented above demonstrates th
thin, weakly conducting suspended fluid film becomes u
stable to spatially periodic convective flow if a sufficient
large voltage is applied across the film. Since our analysi
linear, it cannot describe the convection pattern above on
but it does provide important information about the onset
convection. In this section, we discuss the theoretical res
in the light of previous experiments on smectic@6–8,10# and
nematic@11# films.

Equation~3.28!, combined with the neutral curve, predic
that the onset of convection occurs at a critical voltage p
portional to the film thicknesss and independent of the film
width d, given by

Vc5
s

e0
AshRc. ~4.1!

The dependence ofVc on Ash follows inevitably from di-
mensional analysis. Faettiet al. also found a critical voltage
proportional tosAsh and independent ofd from a highly
simplified model of the ‘‘vortex mode’’ observed by them
nematic films@11#.

In experiments on convection in smectic films,Vc has
been found to be proportional tos for films up to about 20
molecular layers~i.e., about 63 nm! thick @10#. For larger
s, Vc grows somewhat more slowly. This may be a sign th
layer-over-layer shears in thez direction exist for thicker
films; such flows are not accounted for in our calculation.
linear dependence ofVc on s has also been observed in e
periments on nematic films@11#. The nematic films are much
thicker than the smectic films and have significant thickn
nonuniformities. They also exhibit slow flows even belo
the onset of convection, makingVc(s) rather difficult to
measure.

Our most recent experiments on smectic films@10# show
no dependence ofVc on d for films with d between 0.7 and
2.0 mm, with thicknessess between 2 and 25 molecula
layers, that is, between 6.3 nm and 80 nm. This is consis

FIG. 6. t0 as a function ofP for wire electrodes.
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55 2691ELECTROCONVECTION IN A SUSPENDED FLUID . . .
with the prediction of Eq.~4.1!. Over about the same rang
of thickness, as noted above,Vc is also proportional tos, as
predicted. A weak variation ofVc with d, however, was ob-
served in our earlier work@8# for d in the larger range 0.36–
3.5 mm. This work used a thicker film~107 molecular layers
or 340 nm! and a slightly different electrode configuratio
with guard electrodes outside the main electrode wir
These features may have contributed somed-dependent
three-dimensional effects.

The wave number at onset observed in smectic film
periments is@10# kc

expt54.9460.03d21. The measured value
of d is uncertain to65%, so this result yields a measure
dimensionless wave numberkc

expt54.9460.25. This is in
satisfactory agreement with the value ofkc54.74 found
from the minimum in the calculated neutral curve for wi
electrodes. At present, no data are available for compar
to the predictions for the plate electrode geometry.

It is interesting to note that the charge relaxation tim
tq5e0d/ss appropriate to thin conducting films emerges
the natural unit of time in our analysis. As discussed in R
@8#, in a thin film the relaxation time is greater than the bu
value e/s by the factord/e rs, wheree r is the relative per-
mittivity of the fluid. This is a consequence of the restrict
geometry and the fact that the fields lie in the free sp
outside the film. The wave number of the convection patt
observed at onset changes when the film is driven with
voltages for frequencies much larger than 1/tq . It would be
interesting to modify our analysis to allow for time-period
driving voltages.

It is often useful to describe patterns near onset with
equation for the slowly varying amplitudeA of the pattern.
For one-dimensional systems that are symmetric un
A→2A, the appropriate amplitude equation is the Ginzbu
Landau equation@1,2#,

t0
]A

]t
5eA2guAu2A1j0

2 ]2A

]x2
. ~4.2!

Here the amplitudeA can be taken as the amplitude of th
convective velocity field andg governs the nonlinear satura
tion of the amplitude.j0 andt0 are characteristic length an
time scales introduced earlier. We have previously dem
strated that measurements near the onset of convectio
smectic films can be described well by Eq.~4.2! with
e5(V/Vc)

221 @8,10#. The onset of convection occurs at
supercritical bifurcation, and thee dependence of the flow
velocity above onset, the behavior of the amplitude of c
vection near a lateral boundary, and the relaxation of
pattern amplitude after sudden changes ine are all well de-
scribed by fits to Eq.~4.2!. Equation~4.2! can also be de-
rived from the full electrohydrodynamic equations of moti
presented above@13#.

Our analysis gives theoretical results forj0 and t0, as
discussed above. Our predicted value for correlation leng
j050.285, which is about 20% smaller than the experim
tal value @10# of j0

expt50.3660.03. This is in fair, but not
completely satisfactory, agreement. To arrive at bothkc

expt

andj0
expt the experimental measurements were made no
s.
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mensional by dividing by the measured film widthd, which
is known to within about 5%. The main obstacle to maki
quantitative comparisons to our predictions forVc(s) and
t0 are the poorly known material parameterss and ~espe-
cially! h. These appear in the expression for the slo
Vc(s)/s and are also required for calculating nondimensio
times. Realistic smectic films are sufficiently viscous th
they have values ofP@1, so that we expect the infinite-P
limit of t0 to apply. The conductivitys for the doped smec-
tic liquid crystal used in our experiments has been measu
at 1 kHz in a bulk sample@17# and at dc in an annular film
@18#. Over this frequency range, it changes by a factor of
To get agreement betweent0

expt and our theoretical value
requires a value ofs that lies between the dc and 1-kH
measurements. Agreement with theVc(s)/s data@10#, how-
ever, requires using a value ofh a factor of 20 larger than
that estimated by extrapolating measurements ofh made in
the higher-temperature nematic phase@19#. This discrepancy
may be a result of neglecting the effects of air drag on
moving film, which are likely to be important for thin, fas
moving films @20#.

The instability we have described occurs in thin films
fluids that are isotropic in the plane of the film. It should al
exist for anisotropic fluid films near dc, for example in film
of smectic-C and -C* materials. In smectic-C materials, the
molecules are tilted with respect to the layer planes, so
layers are two-dimensional analogs of a nematic flu
Smectic-C* materials have an additional broken symme
that allows a spontaneous electric-dipole moment in
plane of the layers. Flows in these materials will invol
strong orientational effects. It should be straightforward
generalize our analysis to the anisotropic case, which m
lead to interesting new effects. Recently, it has been s
gested that electroconvection, driven by the analog of
Carr-Helfrich mechanism that operates in negative dielec
anisotropy nematics@3#, may occur in smectic-C films under
ac voltages@21#. If materials with the right parameters exis
it seems likely that the new instabilities will coexist or com
pete at low frequencies with the instability we have cons
ered here. Something of this sort is observed in nematic fi
@11,22# in which both a ‘‘vortex’’ and a ‘‘domain’’ mode are
found.

V. CONCLUSION

We have presented a linear stability analysis for the on
of electroconvection in a thin conducting fluid with two fre
surfaces. We found the neutral stability curveR0(k), along
with its critical valuesRc andkc , and the correlation length
j0 implied by its curvature nearkc . The linear growth rate
was used to find the characteristic timet0. This was done for
two simple electrode configurations. These results were c
pared with experiments, mainly on smectic-A films. Several
generalizations of this analysis were suggested.
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